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INTRODUCTION

The most commonly used approaches to describe distributions

of species and biodiversity are known as correlative (syn.

phenomenological) species distribution models (Elith &

Leathwick, 2009). These methods aim to describe the patterns,

not the mechanisms, in the association between species

occurrences and environmental data (mainly climatic data).
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ABSTRACT

Within the field of species distribution modelling an apparent dichotomy exists

between process-based and correlative approaches, where the processes are

explicit in the former and implicit in the latter. However, these intuitive

distinctions can become blurred when comparing species distribution modelling

approaches in more detail. In this review article, we contrast the extremes of the

correlative–process spectrum of species distribution models with respect to core

assumptions, model building and selection strategies, validation, uncertainties,

common errors and the questions they are most suited to answer. The extremes of

such approaches differ clearly in many aspects, such as model building

approaches, parameter estimation strategies and transferability. However, they

also share strengths and weaknesses. We show that claims of one approach being

intrinsically superior to the other are misguided and that they ignore the process–

correlation continuum as well as the domains of questions that each approach is

addressing. Nonetheless, the application of process-based approaches to species

distribution modelling lags far behind more correlative (process-implicit)

methods and more research is required to explore their potential benefits.

Critical issues for the employment of species distribution modelling approaches

are given, together with a guideline for appropriate usage. We close with

challenges for future development of process-explicit species distribution models

and how they may complement current approaches to study species distributions.
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They have provided useful insights for conservation of

biodiversity and ecological understanding of large-scale pat-

terns. However, predictions based on such correlative models

are usually limited in their biological realism and their

transferability to novel environments (Loehle & Leblanc,

1996; Davis et al., 1998; Vaughan & Ormerod, 2003).

Process-based distribution models (here used synonymously

with mechanistic models) can address these deficits by explicitly

including processes omitted from the correlative approach

(Kearney & Porter, 2009). However, process-based models

often demand a large number of parameters to be estimated,

many requiring data of limited availability at often high spatio-

temporal resolution. Thus, to date, such models have been used

for far fewer species than have correlative models.

Here we will show that current approaches to modelling

species distributions represent a continuum with respect to the

explicit inclusion of processes. The aim of this paper is to

compare correlation and process in species distribution

modelling, thereby exposing strengths and weaknesses, and

differences and similarities, between these approaches. From

this comparison we identify some key challenges for species

distribution modelling and indicate promising avenues of

integration.

DEFINITIONS

Correlative species distribution models statistically relate

environmental variables directly to species occurrence or

abundance. In contrast, process-based models formulate the

ecology of a species as mathematical functions in a reductionist

sense, defining causality; the species’ occurrence or abundance

is an indirect, emergent consequence. These functions are also

often empirical correlations, not related to the species’

occurrence or abundance, but to the species’ functional traits

(morphology, behaviour and physiology) and associated life

history (development, growth, reproduction).

Some process-based models are developed entirely ‘for-

ward’, i.e. without any calibration of the model (Kleidon &

Mooney, 2000; Morin et al., 2007), while correlative models

are necessarily data-driven. However, correlative models

employ explanatory variables that are expected to represent

causal mechanisms (Austin, 2002). Furthermore, many pro-

cess-based models also use distributional data to evaluate

model structure or to calibrate and fine-tune some unmea-

surable parameters. The common perception that process-

based models are generally more complex is not true either, as

machine learning-based correlative models are usually of high

complexity (Elith et al., 2006) while process-based models can

be structurally simple (e.g. Kleidon & Mooney, 2000). We

hence propose the following criteria and definitions.

In correlative models, parameters have no a priori defined

ecological meaning and processes are implicit. In contrast,

process-based models are built around explicitly stated mecha-

nisms and parameters have a clear ecological interpretation that

is defined a priori. Functional relationships in process-based

models are specified as causal: x affects y. This is not the case in

correlative models, although their post hoc interpretation is

usually (and sometimes erroneously) causal.

This definition allows us to differentiate models that are

described as process models (e.g. Heisey et al., 2010), but are

not always seen as such (Hodges, 2010; Lele, 2010), from

models that are explicitly process-based. While some models

can clearly be placed at the extreme ends of the correlation–

process continuum, most models will fall somewhere in

between, depending on the extent to which they represent

processes explicitly (Fig. 1). For example, by adding dispersal

to the results of a correlative projection, hybrid models can be

constructed (see Appendix S1 in Supporting Information for

examples). There is, as yet, no consensus what defines hybrid

models, as opposed to integrated models. Here, we use the

term ‘hybrid model’ to refer to the sequential application of

different models (e.g. dispersal after correlation, Thuiller et al.,

2006; process-derived explanatory variables subsequently used

in correlative models, Rickebusch et al., 2008). As a subset of

hybrid models, ‘integrated models’ refer to models where both

modelling strategies are fitted simultaneously to data (e.g.

demography within suitable habitats, Pagel & Schurr, 2011).

Process-based models also differ in the degree of calibration.

We distinguish between ‘forward’ process-based models, where

no parameter is fitted to the data to be explained, and fitted

(statistically calibrated or manually tuned) process-based

models, where some parameters are adjusted to match at least

a subset of the data to be predicted. Examples for the former

include PHENOFIT (Chuine, 2000; Chuine & Beaubien, 2001),

most individual-based models (Grimm & Railsback, 2005) and

the Jena diversity (JeDi) model developed by Kleidon &

Mooney (2000). The latter case is more common, as unknown

parameters are always easier to fit to data than to estimate

independently. Examples in the context of the distribution of

species functional types include CLIMEX (Sutherst & May-

wald, 1985), LPJ (Sitch et al., 2003), LPJ-GUESS (Smith et al.,

2001) and ORCHIDEE (Krinner et al., 2005). In the extreme, a

process-based model may be completely parameterized by

Figure 1 The correlative–process model continuum. In the most

extreme case, correlative models can be applied to existing species

distribution maps without any ecological knowledge (left). They

commonly require a large amount of information on a species’

distribution and environmental variables in order to extract useful

information about the drivers. Hybrid and so-called fitted process-

based models use species distribution data for parameter calibra-

tion, but they always include ecological knowledge based on other

observations and/or theory. In the most extreme case, some pro-

cess-based models do not require any information about a species’

distribution as input data (so-called forward models).
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distribution data (e.g. Van Oijen et al., 2005; Arhonditsis et al.,

2007; also Hartig et al., unpublished).

To date, there have been few direct comparisons between

correlative and process-based models for the same species

(Hijmans & Graham, 2006; Buckley, 2008; Morin & Thuiller,

2009; Elith et al., 2010; Kearney et al., 2010; Keenan et al.,

2011; see Appendix S1). We review the two modelling

approaches from a theoretical perspective with a focus on

how they have been put into practice in the past (Table 1).

PURPOSES OF SPECIES DISTRIBUTION MODELS

An obvious but sometimes forgotten point is that the

usefulness of a model must be assessed with respect to its

purpose. Species distribution models are used to ask a wide

range of questions that can be broadly categorized as seeking

understanding or seeking prediction (see also Perry &

Millington, 2008). For example, understanding what limits

the distribution and abundance of species is a classical

question in ecology and evolution as well as in conservation

and biosecurity. In very few cases can we claim to understand

distributional constraints, and species distribution models are

thus valuable for generating hypotheses that may be tested

experimentally (e.g. Angert & Schemske, 2005; Doak & Morris,

2010). Process-based models can also be used to falsify

hypotheses by formulating a hypothesis as a model and

comparing it formally with data (e.g. Morin et al., 2007).

Identification of the environmental factors influencing

distributional limits is also useful in conservation and

management. Addressing these questions using correlative

models may involve interpolation within the environmental

domain used to develop the model, and extrapolation beyond

this domain. Correlative models often provide a single, static

prediction of a species distribution in these human-driven

environmental scenarios. In contrast, process-based (and

hybrid) models are often used to predict dynamic features of

species distributions, such as invasion rate (Kearney et al.,

2009a), succession and the influence of disturbance, land use

and management measures on species persistence (Schu-

macher & Bugmann, 2006; Jeltsch et al., 2011). In general,

correlative models are essentially static and without access to

the description of non-equilibrium, periodic, chaotic or

alternative stable states (but see claims by De Marco et al.,

2008).

THIRTEEN FEATURES COMMON TO OR

DIFFERENT BETWEEN CORRELATIVE AND

PROCESS-BASED MODELS

1. Assumptions

Both purely correlative models and fitted process-based models

have the same statistical analysis assumptions: error structure

assumptions (such as independence of data, homogeneity and

stationarity of variance), homogeneity of sampling effort and

constant observation error. Both approaches can be adjusted to

accommodate violations of these assumptions (e.g. spatial

autocorrelation, Dormann et al., 2007; non-stationarity, Ho-

thorn et al., 2011; detection probability and observer error,

Royle et al., 2005), but this is rarely done (for example see

Latimer et al., 2006; Bierman et al., 2010). Both approaches

assume that the relevant mechanisms influencing a species’

distribution are captured. Usually, the assumption is made that

the functional forms of the relationships between species

occurrence and environmental variables are correct. In con-

trast, forward process-based models do not use distribution

data for their development, and therefore such data can be used

to validate forward-process models (Chuine & Beaubien, 2001).

Correlative models require species to be in equilibrium with

their environment, i.e. occurring throughout the suitable

environmental space (although not to fill the geographic space

completely). Process-based models can abolish the equilibrium

assumption and use data from the non-equilibrium trajectory

to fit the model (for potential bias resulting from transient

phase data see Moilanen, 2000). When the equilibrium

assumption is removed it is possible to assess range dynamics

Table 1 Comparative aspects of correlative and process-based models as discussed in this paper.

Topic Issues discussed

Assumptions Error structure, structure of functional relationships, relevant processes/predictors,

equilibrium with environment

Information required Distribution data, environmental data, ecological and biological knowledge

Determination of model structure Variable selection, alternative functional relationships, submodels

Verification Technical correctness, model diagnostics

Validation Cross-validation, external validation, parameter validation, sensitivity, specificity

Sources of uncertainty in model predictions Input data, model misspecification, regression dilution, stochasticity

Equifinality Over-parameterization, collinearity, non-identifiability

Extrapolation Model domain, (micro-)evolution, constancy of limiting factors and interactions

Transferability to other species, sites and times Functional types, correlation structure

When to stop: accuracy versus complexity Deployment time, re-parameterization, sensitivity analysis

Communicability/transparency of the model Documentation, open source code/software

Knowledge potentially gleaned from the model Surprise, emergence

Common errors and misuses Lack of uncertainty analysis, use beyond purpose, overconfidence in communication

Bridging the correlation–process dichotomy
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under climate change (Kearney et al., 2008; Keith et al., 2008)

or commercial exploitation (Cabral et al., 2011).

2. Information required

Ecological knowledge of a given target species is used in both

correlative and process-based models. In correlative models, it

guides the pre-selection of explanatory variables. For example,

when they are correlated, direct variables are preferable over

indirect (e.g. temperature has a potential direct effect on

thermal regulation, while elevation serves as a less specific

proxy; Austin, 2002; Guisan & Thuiller, 2005). In process-

based models, ecological knowledge guides the selection and

formulation of processes represented in the model. Relevant

ecological knowledge can be derived from experimental results

or process observations (e.g. seed dispersal, phenology,

growth). Correlative models require data on species distribu-

tion and relevant environmental factors for deriving correla-

tions, while fitted process-based models require these same

data to calibrate their unknown parameters. Data on species

distribution and environmental factors are also used in model

validation (see below).

Processes that occur at smaller spatial or temporal scales

than environmental data used in model building can be

difficult to capture. For instance, a species’ range may be

limited by a few days of frost not captured in commonly used

monthly temperature averages. A small refuge may result in a

species’ presence in a 100-km2 cell of unsuitable habitat, but

land-cover data might not be at a sufficient resolution to

capture this important microhabitat (Trivedi et al., 2008). The

effect of temperature on many organisms is complex and

cannot be represented by interpolated monthly mean air

temperature from weather station records. The latter problem

has been dealt with by combining models of microclimate with

models of behavioural thermoregulation (Kearney et al.,

2009b). Finding additional ways to represent subscale heter-

ogeneity for the analysis at larger scales is an open challenge for

both correlative and mechanistic models.

3. Determination of model structure

At first glance, it would seem that correlative and process-based

models have little in common when it comes to the selection of

which variables/processes are incorporated in the model. If,

however, a likelihood can be formulated for the process-based

model, information-theoretical model selection (Burnham &

Anderson, 2002; Johnson & Omland, 2004) can proceed

similarly for both approaches (see O’Hara & Sillanpää, 2009

for a Bayesian perspective). With Bayesian approaches becom-

ing more widespread, more similarities with respect to the

determination of model structure between correlative and

process-based models may emerge, informing the analyst on

processes relevant for the given data (e.g. Van Oijen et al., 2005).

A more crucial distinction is how processes are included. In

a correlative approach, allowing for nonlinearity, functional

relationships are derived by fitting species occurrences or

abundance to environmental data. In process-based models,

choices about the specific process structure have to be made

based on theory or observation, with potentially large rami-

fications for the model output even from seemingly small

choices (such as between frequency- and density-dependence

of disease transmission: Wasserberg et al., 2009). Evaluation of

alternative choices is rare (or rarely published), however, and

Smith et al.’s (2008) study on different density-dependence

schemes for cormorant population dynamics is a rare excep-

tion. Effectively, this means that in addition to the validation

of the complete model all its components need to be validated

as well (e.g. LaDeau, 2010).

4. Verification

Verification refers to testing the technically correct implemen-

tation of the model, i.e. that the model does what it was

specified to do (Schmolke et al., 2010). The use of this

technical term is somewhat unfortunate, because, philosoph-

ically, verification of models is impossible (Oreskes et al.,

1994), but we use it in line with other publications. Verifica-

tion of a process-based model is usually carried out by running

the model using settings for which the outcome is known, or

can be derived analytically, and by comparing the model

output with the expected result. Also, dimension analysis is a

crucial ingredient, i.e. checking that the units of the right- and

left-hand sides of model equations are identical. Essentially, the

aim of verification is to try hard to find a flaw in the

implementation by producing inconsistent results. In correl-

ative models, verification comprises double-checking of set-

tings, assumptions (error distributions) and pre-processing

steps. In that sense, model diagnostics (i.e. distribution of

residuals, check for spatial autocorrelation) are the most

common steps in the ‘verification’ of statistical models. For

process-based models, beside the consistency with fundamen-

tal physical laws such as conservation of mass and energy,

reproduction of analytical results or simulations using, for

example, the virtual ecologist approach (Zurell et al., 2010) are

options. Model verification is more complex than these lines

suggest, and we thus refer to Starfield et al. (1990) and Grimm

& Railsback (2005) for further details.

5. Validation

Validation refers to the assessment of the correctness of model

predictions using data not used for the building or calibration

of the model. When independent data are available (ideally

from another time and region; Lebreton et al., 1992; Schröder

& Richter, 1999; Araújo et al., 2005), both modelling

approaches can be validated externally. The commonly used

cross-validation (also called internal validation) of correlative

models is intrinsically optimistic compared with external

validation, because it ‘only’ validates the model for data from

the same region and time. The generality of the model hence

remains unassessed. For fitted process-based models, external

validation can also be carried out by comparing their

C. F. Dormann et al.
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parameter estimates with independent parameter estimates

(Cabral & Schurr, 2010; Hartig et al., unpublished). In contrast

to tuned process-based and correlative models, external

validation is the rule in forward process-based models, where

processes are usually parameterized on separate data sets. The

absence of independent parameter estimates in the literature

gives an important feedback to empiricists for improving the

knowledge of the species’ biology.

In addition to validation, both model approaches should

also be assessed for their sensitivity and specificity (in the

statistical sense). First, by using a simulated species, the ability

of the model to recover the known true distribution/param-

eters can be assessed (i.e. the sensitivity of a method; Reineking

& Schröder, 2006). Second, by randomizing the validation

data, the model’s tendency to find patterns in data where there

are none can be gauged (specificity). These tests seem to be

more established (but not necessarily published; Grimm &

Railsback, 2005) for process-based models than for correlative

models (but see Dormann et al., 2008a).

6. Sources of uncertainty in model predictions

Generally, model uncertainty is poorly quantified (Clark et al.,

2001). Five sources of reducible (or epistemic) uncertainty

pertain to both modelling approaches (Beven & Freer, 2001;

Barry & Elith, 2006; Refsgaard et al., 2007): input data

uncertainty, model misspecification, equifinality (see next

section), parameter uncertainty, model stochasticity and

regression dilution. Even worse, these errors may be non-

independent, thus amplifying their effects rather than outbal-

ancing them. Obviously, incorrect input data used for

parameterization of processes or fitting of the correlative

model will bias predictions. For correlative models it has been

shown that bias in presence–absence data (e.g. due to the

so-called botanist effect; Applequist et al., 2007; Pautasso &

McKinney, 2007) is more serious than undersampling per se

(Dennis et al., 1999; Royle et al., 2005). Similarly, an incor-

rectly specified model, for example one where a nonlinear

process is represented by a linear relationship or a relevant

predictor/process is absent, can distort the output. In correl-

ative and fitted process-based models the distortion may be

difficult to detect, as it may be compensated by altered values

of other fitted parameters, leading to good model fits. In

forward process-based models, the incorrect representation of

processes is likely to yield stronger bias in model predictions

because there is no room for such compensation. Because

correlative models are typically more flexible than process-

based models, the latter tend to be more biased (Hartig et al.,

unpublished). However, this also implies that a fitted model

may be giving the right results for the wrong reasons (see next

section ‘Equifinality’). The inclusion of stochastic processes in

process-based models (e.g. dispersal, mortality) or the use of

randomization steps in correlative models (cross-validation,

bootstrap aggregation) will yield different model outcomes

despite identical initial conditions/data. Thus, even attempts to

include more and more processes in order to make a model

more realistic are ultimately confronted with such stochastic

and irreducible (= aleatory) variability, defining the funda-

mental limit of a model’s accuracy.

A large, but in its effects difficult to quantify, uncertainty

derives from the lack of representation of small-scale processes

in large-scale data. Animals can avoid microclimatically

adverse conditions so that the climate encountered by an

organism is often different from the regional average. The

difficulty of deciding whether to include a microscale process

into a process model is conceptually similar to having an

indirect explanatory variable in a regression model. In addition

to this scale problem, coarse environmental data usually have

large errors, which leads to ‘regression dilution’ and hence

underestimation of the strength of a relationship (McInerny &

Purves, 2011). (Note that error in the response variable does

not cause a bias in ordinary regression, while error in the

predictor variable does; Draper & Smith, 1998.)

7. Equifinality

For a given data set, several parameterizations may exist that

equally fit the data (‘non-identifiability’). This equifinality

(Beven & Freer, 2001) is the consequence of a statistically ill-

posed problem, where the information content in the calibra-

tion data set is insufficient to filter out a single parameter set

from all possible sets. One consequence is that we cannot

identify a single best parameter set that is likely to produce the

right results for the right reasons (Kirchner, 2006). The causes

of equifinality differ between correlative and process-based

models (collinearity and over-parameterization, respectively),

but the problem of resulting prediction uncertainty is the

same. In ecology, this problem has not received much

attention (but see Penteriani, 2008; Luo et al., 2009), mainly

because ecological models are complex and data are sparse,

and hence fitting models other than very simple models is rare

(Schulz et al., 2001; Lele et al., 2010). Even though we can use

the full set of equifinal solutions for averaged prediction (both

in a Bayesian as well as in a frequentist setting; Link & Barker,

2006; Dormann et al., 2008b), we do not learn much about our

system from this fitting exercise.

8. Extrapolation

When using distribution models for prediction beyond

the data range (extrapolation in geographical space or in

time, where new environmental conditions occur), more

assumptions become relevant for both approaches. So far,

studies have commonly considered stationarity, i.e. that model

parameter estimates remained constant through space and

time (but see Kearney et al., 2009a; Hothorn et al., 2011).

Specifically, this means that the environmental niche of the

species does not change (e.g. through microevolution, genetic

drift or acclimation; Aitken et al., 2008). Process-based models

can alleviate this problem by trying to explicitly represent

microevolutionary environmental niche shifts in the model

(Kearney et al., 2009a; Chevin et al., 2010).

Bridging the correlation–process dichotomy

Journal of Biogeography 39, 2119–2131 2123
ª 2012 Blackwell Publishing Ltd



Furthermore, both correlative and process-based

approaches assume that the way variables/processes interact

will be the same in the extrapolated case as they were with the

original data. For correlative models this means that the

correlations found when the model was built will remain

the same in the (far) future. For process-based models this

means, for example, that the functional forms of the processes

and parameter values stay the same. This may be quite likely

for some processes (e.g. those depicting thermodynamic laws,

such as body temperature or water balance), but less likely for

others (e.g. a dispersal function or biotic interactions). The

palaeoecological record indicates clearly that plant species in

the past have reacted idiosyncratically to climatic changes

(Huntley, 1991). Furthermore, the extent to which it is

reasonable to extrapolate also depends on whether a process

has been described empirically or from the structure and

assumptions of a general theory. For correlative models, the

model should not be extended outside the conditions under

which the measurements were performed (e.g. elevated CO2).

For process-based models, it seems reasonable to extrapolate

to conditions under which the general theory is supposed

to hold.

9. Transferability to other species, sites and times

For correlative models, several studies have explored the

transferability of a model to other species (Peterson et al.,

1999; Schröder & Richter, 1999; Bonn & Schröder, 2001; Hein

et al., 2007), other sites (Randin et al., 2006; Broennimann

et al., 2007; Pearman et al., 2007) and other times (Araújo

et al., 2005; Araújo & Rahbek, 2006; Giesecke et al., 2006).

Overall, generality was found to be very low, indicating that

the models are tailored to species (or data) idiosyncrasies

rather than to general features of the ecology, although they are

sometimes interpreted as species responses (e.g. niche shifts:

Broennimann et al., 2007). Three possible reasons for low

generality are: (1) the change of correlation structure of

predictors in space and time, violation of assumptions of the

statistical model (Bahn & McGill, 2007; Currie, 2007); (2)

incorrect identification of relevant processes (Beale et al.,

2008); and (3) environmental factors that limit a species’

distribution changing in time or space.

We are not aware of many comparative studies of this type

for process-based models (but see Bugmann & Solomon, 1995,

2000; Bugmann, 1996), possibly because the choice of param-

eters is usually tailored to a certain species (see ‘Information

required’, above).

10. When to stop: accuracy versus complexity

Correlative models can be fitted to data in a matter of minutes

to hours. In fact, preparations of environmental and occur-

rence data usually take much longer than the actual statistical

modelling process itself. This fast deployment time is probably

the main cause of the proliferation of statistical methods in our

data-rich times.

Process-based models commonly take a long time to

develop, as they often simulate nonlinear dynamics and hence

have to deal with issues such as numerical diffusion and time

stepping (Press et al., 2007). Furthermore, they are usually very

sensitive to initial conditions and need burn-in periods to

achieve a reproducible, stable steady state. This can take

considerable computation time and hence slow down the

developmental cycle even more. Even the use of an existing

process model for a new species can take considerable time and

effort, as the parameterization requires either collection of

experimental or observational data with respect to the

phenology and physiology of the species or model calibration

to an existing distribution data set.

Scaling-up and sensitivity analyses of complex process-based

models can be time-consuming (Bolker et al., 1998; Pagel

et al., 2008). Due to the computational demand of dynamic

process-based models, this cannot always be achieved using

automated tools. In fitted process-based models, an accuracy–

complexity return curve (depicting gain in accuracy over

model complexity) is likely to be similar to that of a correlative

model, levelling off fast once a ‘sufficient’ level of complexity is

reached. For correlative models this is described by the

‘variance–bias trade-off’ (Hastie et al., 2009), but for pro-

cess-based models we are not aware of any modelling study

systematically investigating the accuracy–complexity curve

(but see the studies of Cox et al., 2006; Crout et al., 2009;

and Martı́nez et al., 2011, for systematic exploration of

simplified versions of their process-based models).

11. Communicability/transparency of the model

Communication of a model requires: (1) a precise docu-

mentation of the steps/processes included, and (2) sufficient

scientific background of both writer and reader to be able to

judge their appropriateness. Model documentation is tradi-

tionally poor in process-based models and many efforts have

been made to improve this situation (reviewed in Schmolke

et al., 2010). Also the reluctance of many ecological mod-

ellers to make their code publicly available contributes to

low reproducibility of all but the simplest of models.

Reasons for closed code include inelegant coding or

insufficient documentation (Barnes, 2010) as well as the

wish of the scientist to prevent others from using the model

inappropriately or so as to diminish the modeller’s own

publishing prospects. For models of moderate complexity,

re-implementation is actually a good way of testing the

implementation, because potential errors are unlikely to be

reproduced identically.

For correlative models the de facto standard statistical tool is

R (R Development Core Team, 2010), and hence analyses can

be transparently communicated through the exchange of

software code (which is similarly true for other code-based

software such as Python, Sage, Matlab or Mathematica).

Software tools that are configured through a graphical user

interface have the disadvantage that they often do not record

the choices made by the user and hence require special care by
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the user to record and communicate all the chosen settings.

Unfortunately, this is rarely carried out and therefore efficient

logging of the chosen options by the program should be the

standard (as it is for example in Maxent: Phillips & Dudı́k,

2008). Given the many choices available in correlative models,

an analysis of the sensitivity of the results to alternative choices

would be desirable, as stated above for process-based models.

12. Knowledge potentially gleaned from the model

Any useful model should be able to reproduce expected

outcomes (see section 4), but it may also yield counterintuitive

results, which are actually one of the most useful outcomes of

modelling. They may identify new connections between

processes and should generate new hypotheses that can be

confirmed by experiment or other data. Surprising results

obtained using a correlative model, such as an unexpected

correlation between a species’ distribution and a particular

environmental variable, may in fact lead to the discovery of a

new process, while surprises resulting from the use of process-

based models usually relate to unexpected, emergent patterns

as a result of nonlinear interactions between processes that are

already in the model (for an example of this see Eisinger &

Thulke, 2008).

We speculate that, in general, correlative models used in the

exploratory sense are more likely to result in discoveries of new

processes or process interactions than process-based models,

where the processes and interactions have to be defined a

priori. Formally comparing forward process-based models

with data may detect process deficits, but will not necessarily

identify the missing processes.

13. Common errors and misuses

The most common ‘error’ of any modeller is to ‘believe’ a

model. Models are abstractions of reality and their correctness

of abstraction has to be demonstrated (Krakauer et al., 2011).

No ecological model can be right a priori, because fundamen-

tal laws do not exist in ecology (Lawton, 1999), and, with

respect to species distributions, there is no ‘quantum bioge-

ography’. From this first error in ‘attitude’ follow three

common misuses. Firstly, either model type – correlative or

process – is often stretched beyond (sometimes far beyond) the

range of data underlying it. For example, constructing a model

correlating the abundance of a freshwater fish species in

temperate Europe with environmental data cannot be expected

to ‘work’ when taking it to the Mediterranean. This is not

because of the distance involved, but because the wet season is

the cold season in the Mediterranean, while it is the warm

season in Central Europe. We would extrapolate the parameter

estimates to combinations of temperature and precipitation

never encountered in the region for which the model was

developed. Climate change predictions using correlative mod-

els often fall into this category (Ohlemüller et al., 2006).

The second misuse is to employ the model for an

application for which it was not developed, without due

validation/justification. If an ecologist builds a model to

understand home-range size of a passerine bird and includes

landscape composition as a parameter, then this model does

not automatically qualify as an assessment tool for landscape

structure with respect to bird abundance. The reason is simply

that for his or her initial purpose the ecologist may not have

looked at abundance at all, instead inferring it as a by-product

of home-range packing. But where in the model does it state

that each of these ‘virtual home ranges’ must be occupied?

The final common misuse follows from overconfident

communication of a model’s predictions (even within the

parameter range). A simple diagnostic is whether uncertainty

was quantified or discussed: if it was not, the user/modeller is

likely to be overconfident in the model’s prediction. Not an

error, but a missed opportunity for any model, is to omit to

specify a set of predictions to sites with environmental

conditions not encountered when assembling the model.

Collecting data in exactly these conditions would then serve

as a critical test.

CRITICAL ISSUES FOR SPECIES DISTRIBUTION

MODELS

Critical issues for correlative models

Data! Everything depends on the amount, quality and

appropriateness of data. Many statistical papers have devel-

oped fixes for biased sampling, missing values, unbalanced

designs and so forth, but when the relevant ecological driver

has not been quantified, no amount of data will be able to

generate ecologically interesting hypotheses.

The causality of detected correlations is a critical issue for

the use of correlative models, where the input variables are

often correlated among themselves. For example, the observa-

tion that the occurrence of a species is correlated with mean

annual temperature does not necessarily imply that tempera-

ture is itself a direct limiting factor, it could also be solar

radiation, which is usually not represented in the data sets as

accurately as temperature, or the presence of a competitor that

is itself limited by temperature. If the temperature correlation

is used to make a prediction of the species distribution under

climate change, this could lead to incorrect results, as climate

change causes temperatures to increase, but not solar radia-

tion.

Problems can arise when extrapolating in space, as the

correlations between input parameters may be different in

different places and hence a non-causal correlation found in

one place could lead to incorrect results when extrapolated

to another place. An additional problem when extrapolating

in time is that the increasing atmospheric CO2 concentra-

tions are likely to have an impact on plant species ranges

due to the alleviation of water stress (Farquhar, 1997). This

effect is unlikely to be detected in the present data because

the spatial variability of CO2 is negligible. For this reason,

cross-validation using present data sets that were not used

for the derivation of the model may shed some light on the
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uncertainty of the model predictions when extrapolating in

space, but it does not necessarily serve as an indication of

the uncertainty when extrapolating in time, particularly

under climate change.

The use of historical records for validation (e.g. pollen

records in combination with historical climate, where avail-

able), however, could give some indication of the uncertainty

when extrapolating in time, but this is rarely carried out (e.g.

Pearman et al., 2008). Also, with genetic information becom-

ing increasingly available, genetic structure may reflect histor-

ical developments and hence provide additional opportunity

for validation.

Critical issues for process-based models

Fitted process-based models rely on the implicit assumption

that the model structure and process formulations are

correct and that the unknown parameter values can be

obtained by inverse modelling or available observations.

Because the model parameters are fitted to reproduce

observations, the same observations cannot be used to test

for the correctness of the model structure and process

formulations. The accuracy to which a tuned model

reproduces the data is not an indication of correct process

representations, as any data stream can be reproduced to an

arbitrary level of accuracy using, for example, a polynomial

function with sufficient degrees of freedom. On the other

hand, even if a model was a true representation of the

relevant processes, there is no guarantee that the correct

parameter values can be obtained through inverse modelling,

as the available data may not be sufficient to allow

identification of an unambiguous set of parameters that

best reproduces the data. In fact, many different parameter

sets can reproduce the data equally well (see Equifinality).

The different, apparently equally valid parameter sets can

yield very different predictions when used under changed

conditions (e.g. Schulz et al., 2001).

Forward process-based models often rely on empirical

parameterizations of the processes considered. This again

introduces problems akin to those described above for

correlative models, as the causality of observed correlations is

not necessarily assured. If, for example, the observed correla-

tion between mean daily temperatures and the onset of leafing

or flowering was due to a cross-correlation between solar

irradiance and temperatures, while solar radiation was the

directly responsible variable, the model could lead to a wrong

prediction under climate change, where temperatures increase

but not solar radiation. Furthermore, neither empirical

process-based nor correlative models would capture the

adaptation of a species’ phenology to changed climate.

CONCLUSIONS AND OUTLOOK

Our review of the similarities and differences between correl-

ative and process-based species distribution models empha-

sizes that they sit on a continuum defined by the extent to

which processes are explicitly represented. When these two

broad types of models are fitted to observed data, there is

considerable overlap in their assumptions, validation chal-

lenges and reproducibility problems. Although representing

two very different conceptual starting points for species

distribution modelling, they may well converge onto the same

problems with respect to prediction of environmental and

management change. Neither approach warrants the inference

that reproduction of observations is indicative of the model

being ‘true’ (‘right for the wrong reason’; Judd, 2003). Both the

causality of correlations found using a correlative model and

the interplay of mechanisms proposed in a process-based

model should be considered as hypotheses. However, in the

former, the model itself and the data cannot be used to test the

hypotheses, as they have already been used to generate the

hypotheses. In a forward process model, on the other hand,

mechanisms are proposed based on theoretical grounds or

independent data, and hence, in theory, they can be tested

using the match between model results and observations.

However, in practice, most process-based models have a large

number of adjustable parameters that need to be calibrated

against observations. This precludes the use of the same data

for hypothesis testing and reduces the use of the model to an

extrapolation tool.

The future development of both correlative and process-

based approaches is likely to see a mixing of their strengths

(Mokany & Ferrier, 2010): data-driven implementation con-

veys trustworthiness because it is based on ‘real data’;

modelling of actual processes emanates scientific rigour and

mechanistic understanding. The key test for either approach,

however, is its usefulness for the question at hand. Can either

of the two approaches identify previously unknown mecha-

nisms thus generating knowledge? Are models accurately

predicting suitable sites as confirmed by transplant experi-

ments? Are uncertainties small enough to allow selection

between different management scenarios?

We would like to highlight three avenues for research on

species distributions, as follows.

1. Bayesian fitting of process-based models. To understand

how certain the knowledge we put into the model actually is,

we can fit the model to observed data sets (‘model inversion’).

Allowing the uncertainty of model parameters to enter the

fitting process as priors, estimated distributions of model

parameters are indicative of the statistical support of the data

for this specific parameter. Note, however, that such Bayesian

process modelling is still being developed and that we may ‘fit

models that are far beyond our ability to understand them’

(Hodges, 2010, p. 3497). If a parameter’s posterior distribution

largely overlaps with 0, we would conclude that under this

model there is no evidence for the process in this data set. For a

given system, generic models could thus be tailored and

simplified. Model inversion could hence be used in an

inferential way.

2. ‘Forward’ process-based models. To avoid the need for

parameter fitting, unknown parameters in process-based

models can be determined using detailed observations or
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experiments, such as in PHENOFIT (Chuine & Beaubien,

2001) or Niche Mapper (Kearney et al., 2008). Alternatively,

models can be formulated that simulate natural selection from

a randomly generated pool of virtual species resembling the

species of interest, akin to the JeDi model (Reu et al., 2011).

Forward process-based models avoid the problem of equifi-

nality and can be used for hypothesis testing as they are much

less likely to produce the right result for the wrong reasons.

Forward process-based models, if based on first principles, may

also lead to more reliable predictions of species distributions

under environmental change, as their probability of matching

species distributions under new conditions should be com-

pared with their probability of matching them at present (first

principles do not change).

3. Combined workflow. Although we juxtaposed correlative

and process-based models, it may actually be fruitful to join

them in a combined workflow (Mokany & Ferrier, 2010; Peng

et al., 2011). Scientific understanding of nature starts with

observations, i.e. descriptive data. Correlative models efficiently

sift through such data, thereby generating hypotheses on

potentially underlying processes. These can then be taken up,

along with ecological theory and experimental evidence, by

process-based models, based on ecological theory and experi-

mental evidence. Unknown parameters in process-based

models could guide experimental and theoretical research to

gather relevant knowledge for their quantification. The result-

ing process-based models can then generate predictions

specifically designed for a formal test on independent data. In

such a comprehensive approach, researchers with different

interests, expertise and focus can synergistically progress the

field in a way neither correlative nor process-based approaches

can do by themselves.

In conclusion, we find no reason why a proponent of either

of the two extremes of correlative and process-based species

distribution modelling should hold the moral high ground.

‘Correlationists’ should be humble: their model’s success may

be due to spurious correlations. ‘Mechanists’ should be

unassertive about their approach, because they will only find

effects of processes that they included. Either approach must

comply with nature, statistically or mechanistically, and be

aware of the kinds of questions they are best suited to answer.
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O’Hara, R.B. & Sillanpää, M.J. (2009) A review of Bayesian

variable selection methods: what, how and which. Bayesian

Analysis, 4, 85–118.

Ohlemüller, R., Gritti, E.S., Sykes, M.T. & Thomas, C.D.

(2006) Towards European climate risk surfaces: the

extent and distribution of analogous and non-analogous

climates 1931–2100. Global Ecology and Biogeography, 15,

395–405.

Oreskes, N., Shrader-Frechette, K. & Belitz, K. (1994) Verifi-

cation, validation, and confirmation of numerical models in

the earth sciences. Science, 263, 641–646.

Pagel, J. & Schurr, F. (2011) Forecasting species ranges by

statistical estimation of ecological niches and spatial popu-

lation dynamics. Global Ecology and Biogeography, doi:

10.1111/j.1466-8238.2011.00663.x.

Pagel, J., Fritzsch, K., Biedermann, R. & Schröder, B. (2008)
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